STK19 facilitates the clearance of lesion-stalled RNAPII during transcription-coupled DNA repair

Diana van den Heuvel, Marta Rodríguez-Martínez, Paula J. van der Meer, Nicolas Nieto Moreno, Jiyoung Park, Hyun-Suk Kim, Janne J. M. van Schie, Annelotte P. Wondergem, Areetha D'Souza, George Yakoub, Anna E. Herlihy, Krushanka Kashyap, Thierry Boissière, Jane Walker, Richard Mitter, Katja Apelt, Klaas de Lint, Idil Kirdök, Mats Ljungman, Rob M. F. WolthuisPatrick Cramer, Orlando D. Schärer, Goran Kokic*, Jesper Q. Svejstrup*, Martijn S. Luijsterburg*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Transcription-coupled DNA repair (TCR) removes bulky DNA lesions impeding RNA polymerase II (RNAPII) transcription. Recent studies have outlined the stepwise assembly of TCR factors CSB, CSA, UVSSA, and transcription factor IIH (TFIIH) around lesion-stalled RNAPII. However, the mechanism and factors required for the transition to downstream repair steps, including RNAPII removal to provide repair proteins access to the DNA lesion, remain unclear. Here, we identify STK19 as a TCR factor facilitating this transition. Loss of STK19 does not impact initial TCR complex assembly or RNAPII ubiquitylation but delays lesion-stalled RNAPII clearance, thereby interfering with the downstream repair reaction. Cryoelectron microscopy (cryo-EM) and mutational analysis reveal that STK19 associates with the TCR complex, positioning itself between RNAPII, UVSSA, and CSA. The structural insights and molecular modeling suggest that STK19 positions the ATPase subunits of TFIIH onto DNA in front of RNAPII. Together, these findings provide new insights into the factors and mechanisms required for TCR.
Original languageEnglish
Pages (from-to)7107-7125.e25
JournalCell
Volume187
Issue number25
Early online date2024
DOIs
Publication statusPublished - 12 Dec 2024

Keywords

  • CSA
  • CSB
  • DNA repair
  • ELOF1
  • RNA polymerase II
  • STK19
  • TFIIH
  • UVSSA
  • nucleotide excision repair
  • transcription

Fingerprint

Dive into the research topics of 'STK19 facilitates the clearance of lesion-stalled RNAPII during transcription-coupled DNA repair'. Together they form a unique fingerprint.

Cite this