TY - JOUR
T1 - Improving histotyping precision
T2 - The impact of immunohistochemical algorithms on epithelial ovarian cancer classification
AU - Zelisse, Hein S.
AU - Dijk, Frederike
AU - van Gent, Mignon D. J. M.
AU - Hooijer, Gerrit K. J.
AU - Mom, Constantijne H.
AU - van de Vijver, Marc J.
AU - Snijders, Malou L. H.
N1 - Publisher Copyright:
© 2024 The Authors
PY - 2024/9/1
Y1 - 2024/9/1
N2 - To improve the precision of epithelial ovarian cancer histotyping, Köbel et al. (2016) developed immunohistochemical decision-tree algorithms. These included a six- and four-split algorithm, and separate six-split algorithms for early- and advanced stage disease. In this study, we evaluated the efficacy of these algorithms. A gynecological pathologist determined the hematoxylin and eosin (H&E)-based histotypes of 230 patients. Subsequently, the final histotypes were established by re-evaluating the H&E-stained sections and immunohistochemistry outcomes. For histotype prediction using the algorithms, the immunohistochemical markers Napsin A, p16, p53, progesterone receptor (PR), trefoil factor 3 (TFF3), and Wilms’ tumor 1 (WT1) were scored. The algorithmic predictions were compared with the final histotypes to assess their precision, for which the early- and advanced stage algorithms were assessed together as six-split-stages algorithm. The six-split algorithm demonstrated 96.1% precision, whereas the six-split-stages and four-split algorithms showed 93.5% precision. Of the 230 cases, 16 (7%) showed discordant original and final diagnoses; the algorithms concurred with the final diagnosis in 14/16 cases (87.5%). In 12.4%–13.3% of cases, the H&E-based histotype changed based on the algorithmic outcome. The six-split stages algorithm had a lower sensitivity for low-grade serous carcinoma (80% versus 100%), while the four-split stages algorithm showed reduced sensitivity for endometrioid carcinoma (78% versus 92.7–97.6%). Considering the higher sensitivity of the six-split algorithm for endometrioid and low-grade serous carcinoma compared with the four-split and six-split-stages algorithms, respectively, we recommend the adoption of the six-split algorithm for histotyping epithelial ovarian cancer in clinical practice.
AB - To improve the precision of epithelial ovarian cancer histotyping, Köbel et al. (2016) developed immunohistochemical decision-tree algorithms. These included a six- and four-split algorithm, and separate six-split algorithms for early- and advanced stage disease. In this study, we evaluated the efficacy of these algorithms. A gynecological pathologist determined the hematoxylin and eosin (H&E)-based histotypes of 230 patients. Subsequently, the final histotypes were established by re-evaluating the H&E-stained sections and immunohistochemistry outcomes. For histotype prediction using the algorithms, the immunohistochemical markers Napsin A, p16, p53, progesterone receptor (PR), trefoil factor 3 (TFF3), and Wilms’ tumor 1 (WT1) were scored. The algorithmic predictions were compared with the final histotypes to assess their precision, for which the early- and advanced stage algorithms were assessed together as six-split-stages algorithm. The six-split algorithm demonstrated 96.1% precision, whereas the six-split-stages and four-split algorithms showed 93.5% precision. Of the 230 cases, 16 (7%) showed discordant original and final diagnoses; the algorithms concurred with the final diagnosis in 14/16 cases (87.5%). In 12.4%–13.3% of cases, the H&E-based histotype changed based on the algorithmic outcome. The six-split stages algorithm had a lower sensitivity for low-grade serous carcinoma (80% versus 100%), while the four-split stages algorithm showed reduced sensitivity for endometrioid carcinoma (78% versus 92.7–97.6%). Considering the higher sensitivity of the six-split algorithm for endometrioid and low-grade serous carcinoma compared with the four-split and six-split-stages algorithms, respectively, we recommend the adoption of the six-split algorithm for histotyping epithelial ovarian cancer in clinical practice.
KW - Algorithm
KW - Epithelial ovarian cancer
KW - Gynecological pathology
KW - Histotype
KW - Immunohistochemistry
UR - http://www.scopus.com/inward/record.url?scp=85200455167&partnerID=8YFLogxK
U2 - 10.1016/j.humpath.2024.105631
DO - 10.1016/j.humpath.2024.105631
M3 - Article
C2 - 39084566
SN - 0046-8177
VL - 151
SP - 105631
JO - Human pathology
JF - Human pathology
M1 - 105631
ER -