TY - JOUR
T1 - Characterization of the translocation breakpoint sequences of two DEK-CAN fusion genes present in t(6;9) acute myeloid leukemia and a SET-CAN fusion gene found in a case of acute undifferentiated leukemia
AU - von Lindern, M.
AU - Breems, D.
AU - van Baal, S.
AU - Adriaansen, H.
AU - Grosveld, G.
PY - 1992
Y1 - 1992
N2 - The t(6;9) associated with a subtype of acute myeloid leukemia (AML) was shown to generate a fusion between the 3' part of the CAN gene on chromosome 9 and the 5' part of the DEK gene on chromosome 6. The same part of the CAN gene appeared to be involved in a case of acute undifferentiated leukemia (AUL) as well, where it was fused to the SET gene. Genomic sequences around the translocation breakpoint were determined in two t(6;9) samples and in the case of the SET-CAN fusion. Although coexpression of myeloid markers and terminal deoxynucleotidyl transferase was shown to be one of the characteristics of t(6;9) AML, no addition of random nucleotides at the translocation breakpoint could be found. In addition, the breakpoint regions did not reveal heptamer-nonamer sequences, purine-pyrimidine tracts, a chi-octamer motif, or Alu repeats. The sequence in which the translocation breakpoints occurred was enriched in A/T. Notably, the specific introns in which clustering of breakpoints occurs in DEK and CAN both contain a LINE-I element. As LINE-I elements occur with a moderate frequency in the human genome, the presence of such an element in both breakpoint regions may be more than coincidental and may play a role in the translocation process
AB - The t(6;9) associated with a subtype of acute myeloid leukemia (AML) was shown to generate a fusion between the 3' part of the CAN gene on chromosome 9 and the 5' part of the DEK gene on chromosome 6. The same part of the CAN gene appeared to be involved in a case of acute undifferentiated leukemia (AUL) as well, where it was fused to the SET gene. Genomic sequences around the translocation breakpoint were determined in two t(6;9) samples and in the case of the SET-CAN fusion. Although coexpression of myeloid markers and terminal deoxynucleotidyl transferase was shown to be one of the characteristics of t(6;9) AML, no addition of random nucleotides at the translocation breakpoint could be found. In addition, the breakpoint regions did not reveal heptamer-nonamer sequences, purine-pyrimidine tracts, a chi-octamer motif, or Alu repeats. The sequence in which the translocation breakpoints occurred was enriched in A/T. Notably, the specific introns in which clustering of breakpoints occurs in DEK and CAN both contain a LINE-I element. As LINE-I elements occur with a moderate frequency in the human genome, the presence of such an element in both breakpoint regions may be more than coincidental and may play a role in the translocation process
U2 - 10.1002/gcc.2870050309
DO - 10.1002/gcc.2870050309
M3 - Article
C2 - 1384675
SN - 1045-2257
VL - 5
SP - 227
EP - 234
JO - Genes, chromosomes & cancer
JF - Genes, chromosomes & cancer
IS - 3
ER -