Projects per year
Personal profile
Research interests
Machine Learning; Real-World Evidence; Pharmacoinformatics; Epidemiology
Related documents
Keywords
- RA0421 Public health. Hygiene. Preventive Medicine
- Q Science (General)
Fingerprint
Dive into the research topics where Daniel Fernández-Llaneza is active. These topic labels come from the works of this person. Together they form a unique fingerprint.
- 1 Similar Profiles
Collaborations and top research areas from the last five years
Recent external collaboration on country/territory level. Dive into details by clicking on the dots or
Projects
- 1 Active
-
Leveraging real-world data to optimize pharmacotherapy outcomes in multimorbid patients by using machine learning and knowledge representation methods (LEAPfROG Study)
Klopotowska, J. (Principal investigator), Cornet, R. (Other), Cinà, G. (Other), Medlock, S. (Other), ten Teije, A. (Other), Abu Hanna, A. (Other), van Harmelen, F. (Other), Dusseljee - Peute, L. (Other), Herings, R. (Other), Vagliano, I. (Other), Lieverse, J. (Internal PhD candidate), Fernández-Llaneza, D. (Internal PhD candidate) & Vos, R. (External PhD candidate)
01/11/2022 → 01/11/2027
Project: Research
-
Identifying a cohort of hospitalized chronic kidney disease patients using electronic health records: lessons learnt and implications for future research and clinical practice guidelines
Fernández-Llaneza, D., Hilbrands, L. B., Vogt, L., Olde Engberink, R. H. G. & on behalf of the LEAPfROG Consortium, 1 Apr 2025, In: Clinical kidney journal. 18, 4, sfaf073.Research output: Contribution to journal › Article › Academic › peer-review
Open Access -
An Integrated Approach for Representing Knowledge on the Potential of Drugs to Cause Acute Kidney Injury
Fernández-Llaneza, D., Vos, R. M. P., Lieverse, J. E., Gosselt, H. R., Kane-Gill, S. L., van Gelder, T., Klopotowska, J. E. & the LEAPfROG Consortium, 2024, (E-pub ahead of print) In: Drug safety.Research output: Contribution to journal › Article › Academic › peer-review
Open Access -
Fixing confirmation bias in feature attribution methods via semantic match
Cinà, G., Fernandez-Llaneza, D., Mishra, N., Röber, T. E., Pezzelle, S., Calixto, I., Goedhart, R. & Birbil, Ş. İ., 3 Jul 2023.Research output: Working paper › Preprint
File1 Downloads (Pure)